Screening and characterization of surface-tethered cationic peptides for antimicrobial activity.

There is an urgent need to coat the surfaces of medical devices, including implants, with antimicrobial agents to reduce the risk of infection. A peptide array technology was modified to permit the screening of short peptides for antimicrobial activity while tethered to a surface. Cellulose-amino-hydroxypropyl ether (CAPE) linker chemistry was used to synthesize, on a cellulose support, peptides that remained covalently bound during biological assays.

Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features

Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the

Covalent immobilization of antimicrobial agents on titanium prevents

Link to text

Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties

Major problems with biomedical devices in particular implants located in nonsterile environments concern: (i) excessive immune response to the implant, (ii) development of bacterial biofilms, and (iii) yeast and fungi infections. An original multifunctional coating that addresses all these issues concomitantly is developed. A new exponentially growing polyelectrolyte multilayer film based on polyarginine (PAR) and hyaluronic acid (HA) is designed. The films have a strong

Possibilities of Manufacturing an Electrospun Web with Baltic Amber

Fibres & Textiles in Eastern Europe - Issue 5 (113) / 2015

Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms.

Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using

Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings

Ultrathin polyelectrolyte films containing silver nanoparticles appear to be a promising material for antimicrobial coatings used in the medical area. The present work is focused on the formation of multilayer polyelectrolyte films using: polyethyleneimine (PEI) as polycation, Poly(sodium 4-styrenesulfonate) (PSS) as polyanions and negatively charged silver nanoparticles (AgNPs), which led to the polyelectrolyte-silver nanocomposite coatings. The film thickness and mass were measured by ellipsometry and

The Influence of Polyhexamethylene Guanidine Derivatives Introduced into Polyhydroxybutyrate on Biofilm Formation and the Activity of Bacterial Enzymes1

Escherichia coli and Staphylococcus aureus were able to produce biofilm on the surface of polyhydroxybutyrate (PHB), but their abundance depended on type and the concentrations of the polyhexamethylene guanidine (PHMG) derivatives introduced in PHB. Different types of PHMG derivatives inhibited S. aureus ATCC 6538P biofilm formation, but PHB with PHMG salt of sulfanilic acid stimulated E. coli ATCC 8739 biofilm formation. The presence of all

Efficacy Assessment of Treated Articles: A guidance

This report provides guidance how to test efficacy of articles or material treated with biocides. There are two major groups: The first where the treatment is intended to protect the article itself. To prove efficacy, the material/article has to be tested against an untreated variant. In the second group, the treatment is intended to introduce new properties, e.g. to provide hygienic or insect repellency-functions. The

Phenotypic and molecular characterisation of multidrug-resistant Salmonella enterica serovar Hadar in Greece, from 2007 to 2010

All 120 strains of Salmonella enterica serovar Hadar isolated during 2007–2010 in Greece were characterized by phenotypic and molecular methods. High rates of resistance to nalidixic acid (92%) and low levels of ciprofloxacin resistance (88%) were observed. Pulsenet-pulsed field gel electrophoresis profile SHADXB.0001 was predominant in Greece (58%) as in Europe but PT1, a rare phage type in Europe, was frequent in Greece (56%). The